بررسی میزان تأثیر انعکاس مصالح نماهای ساختمانی در افزایش دمای محیطی جزیره حرارتی شهری (نمونه موردی: شهر تهران)

نویسندگان

    سید غلامرضا رضوی امرئی گروه معماری، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران.
    حیدر جهان‌بخش * گروه معماری، دانشکده فنی و مهندسی، دانشگاه پیام‌نور، تهران، ایران h_jahanbakhsh@pnu.ac.ir
    عبدالله ابراهیمی گروه معماری، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران.

کلمات کلیدی:

انعکاس, مصالح نماهای ساختمانی, دمای محیطی, جزیره حرارتی شهری

چکیده

با افزایش شهرنشینی و تراکم ساخت‌وساز در کلان‌شهرها، پدیده جزیره حرارتی شهری (UHI) به یکی از چالش‌های اساسی در حوزه اقلیم شهری تبدیل شده است. در این میان، مصالح ساختمانی و به‌ویژه نماهای شهری، به‌عنوان سطوح قائم در معرض تابش خورشیدی، نقش قابل توجهی در تشدید یا کاهش دمای محیطی دارند. هدف این پژوهش، ارزیابی تأثیر مصالح مختلف نمای ساختمانی بر دمای خشک محیطی در یک نمونه موردی شهری است. برای این منظور، بخش جنوبی فاز یک شهرک اکباتان در تهران به‌عنوان منطقه مطالعه انتخاب شد. با استفاده از نرم‌افزار Grasshopper و پلاگین‌های Ladybug و Dragonfly، سه سناریوی متفاوت شامل وضعیت موجود (نماهای بتنی و سنگی)، نمای تمام‌شیشه‌ای و حالت بدون عوارض انسانی (ترافیک، جمعیت، فضای سبز) مدل‌سازی و شبیه‌سازی شدند. داده‌های خروجی با استفاده از موتور UWG تحلیل و با داده‌های اقلیمی مرجع مقایسه گردید. نتایج نشان داد که مصالح با بازتاب بالا، به‌ویژه شیشه، سبب افزایش قابل‌توجه دمای محیطی در ساعات اوج تابش (۹ تا ۱۵) می‌شوند. در سناریوی نمای شیشه‌ای، بیشینه اختلاف دما با حالت مرجع به بیش از 5.5 درجه سانتی‌گراد رسید. این یافته‌ها بر اهمیت توجه به انتخاب مصالح مناسب در طراحی نمای شهری، به‌منظور کاهش اثرات منفی UHI و بهبود آسایش حرارتی بیرونی تأکید دارند.

دانلودها

دسترسی به دانلود اطلاعات مقدور نیست.

مراجع

1. Hajian Zeidy M, Ghadarjani R, Zaheri M. Sustainable Urban Reconstruction in Historical Texture: Academic Center for Education, Culture and Research (Jahade Daneshgahi); 2021.

2. Gholami H, Kamelnia H, Mahdavinejad MJ, Sangin H. Optimizing Building Configuration and Orientation for Social Housing Projects in Iran. Iranica Journal of Energy & Environment. 2025;16(2):289-308.

3. Jafri A, Villenuve E, Agelin-Chaab M, Hangan H. Experimental investigation of building mock-ups and air source heat pumps in cold climates. Energy and Built Environment. 2025.

4. Jahanbakhsh H, Daneshjoo F, Sheibani N, Sheibani H. Analyzing the Characteristics of Architecture and the Structure of 'Urban'Design in 'Arsen-e Zandieh', Shiraz. Iranian Urban Design Studies. 2025;1(2):321-44.

5. Zaina SM, Fadli F, Hosseini SM. Evaluation of smart irrigation systems in hot-arid climates for green roofs and walls: case of Doha, Qatar. Smart and Sustainable Built Environment. 2022;11(2):346-67.

6. Sterkel M, Kider Jr JT. A comparative study of infrared thermography for improving defect detection for Radio Frequency equipment on communication towers. Measurement. 2025;253:117254.

7. Sharmin T, Chappell A. Detecting the changing impact of urbanisation on urban heat islands in a tropical megacity using local climate zones. Energy and Built Environment. 2025.

8. Sadeghe Sabery MJ, Zahedi Yegane A, Hajian Zeidy M, Ghadarjani R. Evaluation of quality of life in the Paradise neighborhood Mehr Housing Case with emphasis on sustainable development in Hamedan. Journal of Geography and Environmental Studies. 2018;7(27):1-24.

9. Zaheri M, Saremi HR, Hajian Zeidy M. Measuring the Impact of Technology Components on Islamic-Iranian Culture to Build New Sustainable Urban Settlements in Dorud. Geography (Regional Planning). 2022;13(1):359-73.

10. Talaei M, Sangin H. Thermal comfort, daylight, and energy performance of envelope-integrated algae-based bioshading and static shading systems through multi-objective optimization. Journal of Building Engineering. 2024;90:109435.

11. Hajian Zeidy M, Sufinejad A. Sustainable Architecture Indicators in Iranian Buildings: Academic Center for Education, Culture and Research (Jahade Daneshgahi); 2023.

12. Voogt JA, Oke TR. Thermal remote sensing of urban climates. Remote sensing of environment. 2003;86(3):370-84.

13. Tabatabaei SS, Fayaz R. The effect of facade materials and coatings on urban heat island mitigation and outdoor thermal comfort in hot semi-arid climate. Building and Environment. 2023;243:110701.

14. Jahanbakhsh H. Study about realizability situation and utilization contexts of water sensitive urban design. International Journal of Architecture and Urban Development. 2017;7(4):41-8.

15. Hajian Zeidy M, Rouhi M, Razavi Amrei SG. Effect of Passive Solar Cooling Systems Performance on Indoor Air Quality in Buildings. Development Engineering Conferences Center Articles Database. 2024;1(1).

16. Tabassum A, Park K, Hong SH, Baik JJ, Han BS. Impacts of cool roofs on urban heat island and air quality in Dhaka, Bangladesh: A case modeling study during a heat wave. Atmospheric Pollution Research. 2025:102549.

17. Hosseini SM, Heidari S. General morphological analysis of Orosi windows and morpho butterfly wing's principles for improving occupant's daylight performance through interactive kinetic façade. Journal of Building Engineering. 2022;59:105027.

18. Siddiqui A, Maske AB, Khan A, Kar A, Bhatt M, Bharadwaj V, et al. An Urban Climate Paradox of Anthropogenic Heat Flux and Urban Cool Island in a Semi-Arid Urban Environment. Atmosphere. 2025;16(2).

19. El Kenawy AM, Abdelaal MM, Aboelkhair H, Mohamed EK. Urban comfort dynamics in major megacities in the middle East: A Spatiotemporal assessment and linkage to weather types. Urban Climate. 2025;59:102309.

20. Heidari S. Thermal comfort in Iranian courtyard housing: University of Sheffield; 2000.

21. Amani MJ, Tanzadeh R, Moghadas Nejad F, Kabiri Nasrabad MM, Chalabii J, Movahedi Rad M. Urban Sustainability Through Pavement Technologies: Reducing Urban Heat Islands with Cool Pavements. Buildings. 2025;15(3):504.

22. Sharston R, Singh M. Urban morphology, urban heat island (UHI) and building energy consumption: A critical review of methods and relationships among influential parameters. Building Services Engineering Research & Technology. 2025:01436244251339727.

23. Jahanbakhsh H, Koumleh MH, Alambaz FS. Methods and techniques in using collective memory in urban design: achieving social sustainability in urban environments. Cumhur Univ Fac Sci J(CSJ). 2015;36:13.

24. Li H, Cai Y, Yang Y, Cai X. Assessing the influence of urban scene characteristics on urban heat island: An interpretable machine learning approach in New York City. Urban Climate. 2025;62:102542.

25. Zamani Z, Heidari S, Hanachi P. Reviewing the thermal and microclimatic function of courtyards. Renewable and Sustainable Energy Reviews. 2018;93:580-95.

26. Chen Y, Ma W, Shao Y, Wang N, Yu Z, Li H, et al. The impacts and thresholds detection of 2D/3D urban morphology on the heat island effects at the functional zone in megacity during heatwave event. Sustainable Cities and Society. 2025;118:106002.

27. Heidari S, Sharples S. A comparative analysis of short-term and long-term thermal comfort surveys in Iran. Energy and Buildings. 2002;34(6):607-14.

28. Wang M, Wang X, Luan Q, Xu X. A new perspective to assess urban heat islands by incorporating both canopy and boundary layer air temperature from the view of satellite remote sensing. Sustainable Cities and Society. 2025;125:106315.

29. Wang X, Li H, Sodoudi S. The effectiveness of cool and green roofs in mitigating urban heat island and improving human thermal comfort. Building and Environment. 2022;217:109082.

30. Xiao XD, Dong L, Yan H, Yang N, Xiong Y. The influence of the spatial characteristics of urban green space on the urban heat island effect in Suzhou Industrial Park. Sustainable Cities and Society. 2018;40:428-39.

31. Shafiee E, Faizi M, Yazdanfar SA, Khanmohammadi MA. Assessment of the effect of living wall systems on the improvement of the urban heat island phenomenon. Building and environment. 2020;181:106923.

32. Chen J, Jin S, Du P. Roles of horizontal and vertical tree canopy structure in mitigating daytime and nighttime urban heat island effects. International Journal of Applied Earth Observation and Geoinformation. 2020;89:102060.

33. Zhao TF, Fong KF. Characterization of different heat mitigation strategies in landscape to fight against heat island and improve thermal comfort in hot-humid climate (Part I): Measurement and modelling. Sustainable cities and society. 2017;32:523-31.

34. Schibuola L, Tambani C. Performance assessment of seawater cooled chillers to mitigate urban heat island. Applied Thermal Engineering. 2020;175:115390.

35. Xie N, Li H, Abdelhady A, Harvey J. Laboratorial investigation on optical and thermal properties of cool pavement nano-coatings for urban heat island mitigation. Building and Environment. 2019;147:231-40.

36. Fabiani C, Pisello AL, Bou-Zeid E, Yang J, Cotana F. Adaptive measures for mitigating urban heat islands: The potential of thermochromic materials to control roofing energy balance. Applied Energy. 2019;247:155-70.

37. Yang YK, Kim MY, Chung MH, Park JC. PCM cool roof systems for mitigating urban heat island-an experimental and numerical analysis. Energy and Buildings. 2019;205:109537.

38. Akbari H, Kolokotsa D. Three decades of urban heat islands and mitigation technologies research. Energy and buildings. 2016;133:834-42.

39. Santamouris M. Cooling the cities-a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar energy. 2014;103:682-703.

40. Yuan J, Masuko S, Shimazaki Y, Chai J. Researching the design of a glass-bead retro-reflective material to reduce downward reflection for urban heat island mitigation. Materials Today Sustainability. 2022;18:100147.

41. Rossi F, Pisello AL, Nicolini A, Filipponi M, Palombo M. Analysis of retro-reflective surfaces for urban heat island mitigation: A new analytical model. Applied energy. 2014;114:621-31.

42. Susca T, Zanghirella F, Colasuonno L, Del Fatto V. Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review. Renewable and Sustainable Energy Reviews. 2022;159:112100.

43. Asadi A, Arefi H, Fathipoor H. Simulation of green roofs and their potential mitigating effects on the urban heat island using an artificial neural network: A case study in Austin, Texas. Advances in Space Research. 2020;66(8):1846-62.

44. Han T, Du C, Xie Y, Xian X, Zhang X, Yang B, et al. A 3D perspective for understanding the mechanisms of urban heat island and urban morphology using multi-modal geospatial data and interpretable machine learning. Building and Environment. 2025:113184.

45. Wang W, Yao X, Shu J. Monitoring Diurnal Variations and Displacement of Surface Urban Heat Islands Using 10-minute Himawari-8 Data for Urban Climate Adaptation. Sustainable Cities and Society. 2025:106586.

46. Tabassum A, Hong SH, Park K, Baik JJ. Simulating urban heat islands and local winds in the Dhaka metropolitan area, Bangladesh. Urban Climate. 2025;59:102284.

47. Jato-Espino D, Lierow S, Rodríguez-Sánchez MÁ. Using classification algorithms to model nighttime Surface Urban Heat Island (SUHI), with an emphasis on the role of urban trees. Building and Environment. 2025;270:112572.

48. Wu T, Chen Z, Zhou S, Huang R, Xing P, Li S, et al. Joint evaluation of urban built environment's driving patterns on urban heat island (UHI) and urban moisture island (UMI). Sustainable Cities and Society. 2025:106450.

49. An Z, Ming Y, Liu Y, Zhang G. Investigating 2D/3D factors influencing surface urban heat islands in mountainous cities using explainable machine learning. Urban Climate. 2025;59:102325.

50. Najjar M, Indraganti M, Furlan R. The Role of Building Geometry in Urban Heat Islands: Case of Doha, Qatar. Designs. 2025;9(3):77.

51. Martinelli A, Carlucci F, Fiorito F. On the role of the building envelope on the urban heat island mitigation and building energy performance in Mediterranean cities: A case study in southern Italy. Climate. 2024;12(8):113.

52. De Masi RF, Festa V, Gigante A, Ruggiero S, Vanoli GP. Comprehensive analysis of the incidence of glazed components and PV system degradation on the achievement of nearly zero energy balance under extreme events and climate changes. Energy Reports. 2024;11:4397-411.

دانلود

چاپ شده

۱۴۰۴/۰۳/۳۰

ارسال

۱۴۰۳/۰۵/۱۷

بازنگری

۱۴۰۳/۰۸/۱۹

پذیرش

۱۴۰۳/۰۸/۲۴

شماره

نوع مقاله

مقالات

ارجاع به مقاله

رضوی امرئی س. غ. .، جهان‌بخش ح.، و ابراهیمی ع. . (1404). بررسی میزان تأثیر انعکاس مصالح نماهای ساختمانی در افزایش دمای محیطی جزیره حرارتی شهری (نمونه موردی: شهر تهران). تجلی هنر در معماری و شهرسازی، 3(1)، 1-22. https://jmaaue.org/index.php/jmaaue/article/view/72

مقالات مشابه

1-10 از 45

همچنین برای این مقاله می‌توانید شروع جستجوی پیشرفته مقالات مشابه.